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The determination of bodles of minimum drag and of nozzles with maximum flux
for a given size was considered 1n the works [1] to [7]. Various schemes of
solution were found, and the regions of thelr application in the hodograph
plane. The determination of the regions of existence of these solutions in
the flow plane requlres the use of numerical methods, and has so far not

been carried out. Insufficient attention to this side of the question leads
to the loss of -some solutions. The latter may contain portions of the bounda-
ry extremum prescribed by the limlted dimensions of the bodies.

Below, the regions of existence of various solutions in the flow plane
are determined and new schemes of solutlion are developed. The basic con-
siderations are carried out on the example of nozzles.

1. Let it be required to construct the contour gab» of the supersonic
part of a plane or axlisymmetric nozzle
(Fig. la), possessing maximum thrust
for a given position of the initial
point g , length X , and maxXimum
lateral dimension ¥ . Carteslan co-~
ordinates 1n the flow plane are denoted
by x, y 5 in the axisymmetric case the
x-axls coincides with the axls of sym-
metry. The contour of the entrance
portion mg of the nozzle, completely
determining the sonic line sg, 1is also
given, A limitation may also be imposed
upon the curvature of the initial portion
of the contour ¢gb .

In the solutlons obtalned up till
now, the terminal portion of the contour
a realizes a two-sided extremum.

Conversion to the characteristic
control contour transforms the problem
to the general problem of Lagrange
with one independent variable. A con-
tinuous solution (in the sense of con-
tinuity of the function on the charac-
teristic of ob ) was obtained in the

Fig. 1 works [1] to [ 3], [6] and {[7], and a
solution with isentropic discontinuities in the works [5] to [7]. In the
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latter case (Fig. 1b) the contour Gp contains two portions of the boundary

extremum aa’ and d% . The first of them is bounded by the prescribed

curvature of the contour, and the second lnvolves such & retardation of the

ggream that a shock wave han begins on the boundary of the region of in-
uence,

Aside from the portions Just consldered, the nozzle contour may contain
portions of the boundary extrema x = X and y = Y assoclated with the
limiting dimensions of the nozzle. We consider the portion x = f . With the
presence of the step by 1t 1s necessary in determining the force y acting
on the wall of the nozzle, to know the pressure distributioh along this line
{(Fig. 1¢). Fdr flow of gas into & vacuum that problem is readily solved. For
nonzero external pressure a stagnation zone forms at the step, and calculatlion
of the flow becomes a very difficult problem. Here, conslderation willl be
limited to the simplest case of constant pressure py on the portion pg ,
independent of the shape of the contour ag . Study of this scheme leads to
the conclusion that lntroduction of a step under specific conditions permits
the thrust of the nozzle to be increased.

To within a constant multiplier
Vg
X = S py’dy
Ya

where P 1s the pressure. The quantities yx and X are expressed by inte-
grals along the characteristics g¢ and eb and along the line bg with
the coineiding of ¢ and g’}
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where ¢ 1s the stream function referred to y;+4p*uﬁ; p is the density re-

ferred to p*, w 1s the velocity module referred to p*, ¥ 1is the angle of
inclination of the veloclty vector to the stream axis, o 1s the Mach angle,
v 1s 0 or 1 for the plane and axisymmetric cases, respectively, the de-
rivative x'= dx/dy 1s taken along the contour of the body, and yp* and p*

are the critical values of velocity and density, respectively.

To solve the problem we use the method of Lagrange multipliers. A funetion-
al J , which includes the expresslons for yx and Y and differentlal rela-
tions on the closing characteristic pe 1s formed. From the expression for
the first variation of J 1t follows that by virtue of the constancy of Pr
the portion @b should be optimum also for a fixed position of the point p;
that is, the shape of the contour gb 1is determined by the same equations as
in the abpence of the step py . Varlation of the coordinates of the point
» with consideration of the necessary extremum condltlons for-the portion
ab glves

8% = yp’ (p— pp — pws? ung sin © cos B), 8y, + v’ (P, — Pp) un B3z, 1.3)

where 6y, and &x, are the variations of the coordinates of point b .

If there is a solution with a portion p»g , the value of &y, 1s arbitrary,
and 3z, 0. From (1.3) follow the necessary conditlons for an extremum of x

Pp— Pr — Pyt tndysin B, cos &, =0, (pp— pr)an®y >0 (1.4)

The first equation determines the ordinate of point b . It is called the
Busemann condition and was obtained previously [1], {6] and [7] in the prob-
lem of determining the optimum nozzle for a free transverse dimension. The
second condition has, with consideration of (1.4), the form
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ppwy? tg ay sin? 4, > 0 (1.5)

In the absence of a step the permissible by, are negative. The necessary
condltion for a maximum of y 1in this case is

Py — Py — Pt tga, sin By cos 8, > 0 (1.6)

In the case of non-fulfillment of this condition, replacement of the con-
tour by a nearby contour with a step lead to increase of the thrust x » A
cylindrical portion of the nozzle contour y = ¥ 1s possible only when ¥
exceeds the minimum nozzle length that glves a uniform exit stream for a
given value of ¥ . However, In this case there exist an infinite number
of solutions with the same value of thrust.
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Fig. 2

2. According to what has been said, calculations for the optimum axisym-
metric nozzle with a plane transition surface were accomplished. In the
calculations a perfect gas has an adiabatic exponent x = 1.4 ., The departure
from the transltion surface was effected by expansion. in series [ 9}, and the
caleulation of the transonic flow by the method of characteristics [8]. The
extremal characteristic was found from the relations of the work in (6]

The results of the calculations are shown In Flg. 2¢ and 2p. Pilg. 2a
shows the regions for various solutions in the flow plane, The line 45
represents the geometnic locus of the ends of nozzle contours of minimum
length for uniform exit flow. The narrow lines represent the geometrilc locl
of terminal points » at which the condition (1.%) is satisfied for various
values of Pr- For example, line 4¢ corresponds to pp= 0. The polnts b
belong to the region DEAB for continuous solutions. The points b belong
to the region pFp¢ for solutions with isentropic discontinuities.

Various cases of the position of the terminal nozzle point are possible.
If the given terminal nozzle point lies between the curve 45 and the
straight line y = 1 , the optimum contour will consist of the contour
giving a uniform stream and ending on A4F , and of the cylingrical portion
v =Y . If point » 1lies between the line for the given value of P7 and
line 4F , solution of the problem gives a contour reachling that point.
Finally, 1f the terminal point lles below the corresponding line pp= const,
the nozzle must have a step portion bg . The point » 1lies on the inter-
section of the curve pg == const with the straight line «x =% .

In Fig. 2b the narrow lines in the region (¢4F are the geometric loci of
the ends of the optimum nozzles without steps for a constant value of
The heavy lines A4F show two examples of nozzle contours.
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3. We consider the a® plane. At the point » the quantities p, p
and p are functions of « . In the plane a® conditions (1.4) and (1.6)
determine the regions that must correspond to the terminal points of the
extremal characteristics for different values of PT .

In Fig. 3 the regilons pyU corresponds to conditions (1.4) and (1.6) for
pPr = 0 and region 1¥U for Pr = 0.0778. The value of x = 1.% . Let the
terminal point of the desired contour be gilven. We try to find a solution
in which the terminal point & of the extremal characteristic coincides
with the given point. If the values a, and ﬁb obtained do not belong to

the region (1.6), the contour

0& that is found can be varied so
A K H that the thrust y 1s increased.
b 7z In this case the desired contour

consists of the smooth portion
eb and a step portion gy .

The portion ab ;s determined
by the necessary conditions for

]
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@p and &y, must satisfy con-
dition (1.4).

v Conditions (1.4) and (1.6)
v - distinguish from all extremals
08 12 e those that give the solution of
the problem. The minimum possi-
Fig. 3 ble value of pr =0 and con-

sequentlv the region of possible
@, and ﬁb is bounded. In Fig. 3 below the curves VSU and VWU lies the
reglon in which the extremal characteristics hbd satisfy the necessary con-
ditions for maximum thrust [6]. The dotted line bounds the region in which
the points A of extremal characteristics b 1lie after an isentropic disg-
continuity [5]. The dashed line yT gives the relation between ‘@ ' and
at point ¢ for Prandtl-Meyer flow., Calculations show [9] that this line
is the upper limit of the regilons corresponding to the fan of characteristics
for flow past a corner e in the axisymmetric case.

This is true also 1in plane flow with a plane transition surface.

The quantities @ and ¢ 1n plane isentropic flow are constant on the
extremal characteristic. Therefore, from the relative location of the curves
in Fig. 3, it follows that for x = 1.4 in plane nozzles a continuous solu-
tion is realized with a step portion or without one. In the axisymmetric
case motion along the extremal from h to p corresponds to motion in the
at plane, in the direction toward the axis § — (. Therefore here are alsoc
realized solutions with isentropic discontinuities, to which the region CED
corresponds (Flg. 2g). With increasing pr the region of such solutions
contracts and then disappears.

L, An analogous investigation can be carried out also in the case of
external flow. In this case Fig. 3 is replaced by its mirror image in the
a-axls, and the relations (1.4) to (1.6) are replaced by

py— pp + ppwpttga,sind, cosdy =0 (4.1)
~ (P — pp)an By >0 (4.2)
Po— Pr + pywy? tg ay sin &, cos &, =0 (4.3)

Equation (4.1) was obtained previously in the solution of the problems
of a free transverse dimension [10] and [7]. From (4.3) i1t follows that the
step 1s absent for Pr< Pb and ﬂb:>0 . In the case of isentropic axisym-
metric flow the solutions with 1sentropic discontinuitles are not realized,
because moving along the extremal from A toward » 1in the aff plane leads
to moving away from the axis ¢ = 0.

Por three plane profiles in the case of a uniform free stream parallel to
the x-axis at Mach number u = 2.858 with pp =0 and ¥/x = — 0.5530, cal-
culation of the drag coefficient g, (OD) gave the following results:

ey, = 0.1441, Oy, = 0.1640, = (.1628

cx‘
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Profile 1 gives the solution of the problem. It consists of a rectilinear
portion with § = — 0.4977 and a step portion. Profile 2 is rectilinear and
Jjolns the polnts ¢ and g . Profile 3 Joins the points g and ¢ and
realizes the solution with an isentropic discontinuity. The value of o, is
determined by Equation *

0x=— 2 (( + Poo¥) | Yo
where the subscript « denotes parameters of the free stream.

5. We have here found the regions for different solutions in the flow
plane, considered the hodograph plane, and found solutions with step portions
under the assumptlion that the pressure of the step 1s constant and does not
depend upon the shape of the desired contour . However, the pressure on the
step ordinarlly depends upon the shape of the contour gb . The qualitative
investigation in [7], in which the presence of a step was postulated, shows
that the solution including this dependence differs from the solution found
above. At the same time the inequalities {1.6) and (4.3} are preserved.
This makes it possible to find the region in which a contour without a step
gives the solutlon. For verifying (1.6) and {4.3) 1t 1s sufficient to use
an approximate value of pr obtained, for example, by the method of [11].

It is essential that if the solution under the assumption of PT as con-
stant, leads to a contour with a step portion, when pr 1s chosen to have
1ts smallest possible value, then in reallty this contour, not being optimum,
ensures a higher thrust than the solutions without a step obtained previously.
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