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The determination of bodies of minimum drag and of nozzles with maximum flux 
for a given size was considered in the works [l] to [T]. Various schemes of 
solution were found, and the regions of their application in the hodograph 
plane. The determination of the regions of existence of these solutions in 
the flow plane requires the use of numerical methods, and has so far not 
been carried out. Insufficient attention to this side of the question leads 
to the loss ofsome solutions. The latter may contain portions of the bounda- 
ry extremum prescribed by the limited dimensions of the bodies. 

BeZow, the regions of existence of various solutions in the flow plane 
are determined and new schemes of solution are developed. The basic con- 
siderations are carried out on the example of nozzles. 

1, Let it be required to construct the contour a2, of the supersonic 
part of a plane or axisymmetric nozzle 
(Fig. lo), possessing maximum thrust 
for a given position of the initial 
point a , length X , and maximum 

a lateral dimension Y . Cartesian co- 
ordinates in the flow plane are denoted 
by x> 1/ ; in the axisymmetric case the 
x-axis coincides with the axis of sym- 
metry. The contour of the entrance 
portion ma of the nozzle, completely 
determining the sonic line sq, is also 
given. A limitation may also be imposed 
upon the curvature of the initialportion 
of the contour ab . 

In the solutions obtained up till 
now, the terminal portion of the contour 
a realizes a two-sided extremum. 

Conversion to the characteristic 
control contour transforms the problem 

C 
to the general problem of Lagrange 
with one independent variable. A con- 
tinuous solution (in the sense of con- 

I tinuity of the function on the charac- 

Pig. 1 
teristic of cb ) was obtained in the 
works [I] to [3], [6] and [7], and a 

solution with isentropic discontinuities in the works [5] to [7j. In the- 
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latter case (Fig. lb) the contour 
extremum a@' and a% . 

sb contains two portions of the boundary 
The first of them is bounded by the prescribed 

curvature of the contour, and the second involves such a retardation of the 
stream that a shock wave & begins on the boundary of the region of in- 
fluence. 

Aside from the portions just considered, the nozzle contour may contain 
portions of the boundary extrema x = X and y = Y associated with the 
limiting dimensions of the nozzle. We consider the portion x = X . Wlththe 
presence of the step bq it is necessary in determining the force x acting 
on the wall of the nozzle, to know the pressure distribution along this line 
(Fig. lo). For flow of gas into a vacuum that problem isreadily solved. For 
nonzero external pressure a stagnation zone forms at the step, and calculation 
of the flow becomes a very difficult problem. Here, consctderation will be 
limited to the simplest case of ConStant pressure PT on the portion bg , 
independent of the shape of the contour ag . Study of this scheme leads to 
the conclusion that introduction of a step under specific conditions permits 
the thrust of the nozzle to be increased. 

To within a constant multiplier 

%J 

where p is the pressure. The qUantitieS x and x are expressed b 
grals along the characteristics ao and cb 
the coinciding of a and a') 

and along the line bg 

Jlc 
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where Jr is the stream function referred to yF1p*w*; p is the density re- 
ferred to p*, w Is the velocity module referred to w*, 6 is the angle of 
inclination of the velocity vector to the stream axis, a is the Mach angle, 

is 0 or 1 for the plane and axlsynnnetric cases, respectively, the de- 
Zivative x'= &c/dk is taken along the contour of the body, and W* and p* 
are the critical values of velocity and density, respectively. 

To solve the problem we use the method of Lagrange multipliers. A funetion- 
al J , which includes the expressions for x and x and differential rela- 
tions on tile closing characteristic bo is formed. From the expression for 
the first variation of J it follows that by virtue of the constancy of PT 
the portion ab should be optimum also for a fixed position of the point b; 
that is, the shape of the contour ab is determined by the same equations as 
in the absence of the step bg . Variation of the coordinates of the point 
b with consideration of the necessary extremum conditions for.the portion 
ab gives 

where b& and bx, are the variations of the coordinates of point b . 
If there is a solution with a portion bg , the value of bpb is arbitrary, 

and &a+,<& From (1.3) follow the necessary conditions for an extremum of x 

Pb-PT - pbw~~~absin~bc~~b=~, &$-pT)~$,&@ (W 

The first equation determines the ordinate of point b . It is called the 
Busemann condition and was obtained previously [l], [6] and [7] In the prob- 
lem of determining the optimum nozzle for a free transverse dimension. The 
second condition has, with consideration of (1.4), the form 
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pbwz tg ab sin’ 6, > 0 (1.5) 

In the absence of a st;ep the permissible 6~~ are negative. The necessary 
condition far a maximum of x in this case is 

Pb-PT - p&,’ tg ab sin 6, cos 6, > 0 (W 

In the case of non-fulfillment of this condition, replacement of the con- 
tour by a nearby contour with a step lead to increase of the thrust x A 
cylindrical portion of the nozzle contour u = 3' is possible only when' x 
exceeds the minimum nozzle length that gives a uniform exit stream for a 
given value of Y . However, in this case there exist an infinite number 
of solutions with the same value of thrust. 

a 

Y 
c 

If? 

b 

1 I 
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Fig. 2 

2. According to what has been said, calculations for the optimum axisym- 
metric nozzle with a plane transition surface were accomplished. In the 
calculations a perfect gas has an adiabatic exponent L = 1.4 The departure 
from the transition surface was effected by expansion.in series [9], and the 
calculation of the transonic flow by the method of characteristics [8]. The 
extremal character&tic was found from the relations of the work in [6~ . 

The results of the calculations are shown in Fig. 2a and 2h. Fig. 2~ 
shows the regions for various solutions in the flow plane. The line AB 
represents the geomettic locus of the ends of nozzle contours of minimum 
length for uniform exit flow. The narrow lines represent the geometric lccl 
of terminal points b at which the condition (1.4) is satisfied for varlous 
values of PT. For exampIe, line AC corresponds to PT= 0. The points b 
belong to the region D&4B for continuous solutions. The points b belong 
to the region DEC for solutions with isentropic dlscontinuities. 

Various cases of the position of the terminal nozzle point are possible. 
If the given terminal nozzle point lies between the curve AB and the 
straight line p = 1 , the optimum contour will consist of the contour 
giving a uniform stream and ending on AB , and of the cylingrical portion 

Y 
Y& AP 

If point b lies between the line for the given Valw of PT and 
solution of the Troblem gives a contour reaching that point. 

Finally, if the terminal point lies below the corresponding line PT= co-t, 
the nozzle must have a step portlon bg . The point b lies on the inter- 
section of the curve pT = const with the straight line x = X . 

In Fig. 2 b the narrow lines in the region CAB are the geometric loci of 
the ends of the optimum nozzles without steps for a Constant value of x . 
The heavy lines AF show two examples of nozzle contours. 
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3. We consider the a6 plane. 
and 2L are functions of 

At the point b the quantities p, p 
O. . In the plane a6 conditions (1.4) and (1.6) 

determine the regions that must correspond to the terminal points of the 
extremal characteristics for different values of pT . 

In Fig. 3 the regions v~/U corresponds to conditions (1.4) and (1.6) for 
pT =O and region LNU for pT = 0.0778. The value of w = 1.4 Let the 
terminal point of the desired contour be given. We try to find a solution 
in which the terminal point b of the extremal characteristic coincides 
with the given point. If the values ab and 6,' obtained do not belong to 

the region (1.6), the contour 
that is found can be varied so 
that the thrust x is increased. 
In this case the desired contour 
consists of the smooth portion 
ab and a step portion bg . 
The portion ab Js determined 
by the necessary conditions for 
an extremum at 
ab and 6,~ 

xb_= X , where 
must satisfy con- 

dition (1.4). 

Conditions (1.4) and (1.6) 

0 0 4 08 
distinguish from all extremals 

12 a those that give the solution of 
the problem. The minimum possi- 

Fig. 3 ble value of pi = 0 and con- 
sequentlv the region of possible 

a,, and ‘b. is bounded. In Fig. 3 below the curves VSU and VWU lies the 
region in which the extremal characteristics 
ditions for maximum thrust [6]. 

hb satisfy the necessary con- 
The dotted line bounds the region in which 

the points h of extremal characteristics hb lie after an isentropic dis- 
continuity [5]. The dashed line UT gives the relation between ,a and 6 
at point a for Prandtl-Meyer flow. Calculations show [g] that this line 
is the upper limit of the regions corresponding to the fan of characteristics 
for flow past a corner a in the axisymmetric case. 

This is true also in plane flow with a plane transition surface. 

The quantities a and 6 in plane isentropic flow are constant on the 
extremal characteristic. Therefore, from the relative location of the curves 
in Fig. 3, it follows that for x = 1.4 in plane nozzles a continuous solu- 
tion is realized with a step portion or without one. In the axisymmetric 
case motion along the extremal from h to b corresponds to motion in the 
aZ) plane-in the direction toward the axis 6 = 0. Therefore here are also 
realized solutions with isentropic discontinuities, to which the region CED 
corresponds (Fig. 2~). With increasing PT the region of such solutions 
contracts and then disappears. 

4. An analogous investigation can be carried out also in the case of 
external flow. In this case Fig. 3 is replaced byits mirror image in the 
a-axis, and the relations (1.4) to (1.6) are replaced by 

pb- pT + pb wbztgab sin$, cosef)b = 0 (4.1) 

-&,-PT)m%,>o (4.2) 
pb - pT + pbwb2 tg ab sin 6, cos 6, > 0 (4.3) 

Equation (4.1) was obtained previously in the solution of the problems 
of a free transverse dimension [lo] and [7]. 
step is absent for pT<Pb and 6,>0 . 

From (4.3) it follows that the 
In the case of isentropic axisym- 

metric flow the solutions with isentropic discontinuities are not realized, 
because moving along the extremal from h toward b in the ae 
to moving away from the axis 6 = 0. 

plane leads 

For three plane profiles in the case of a uniform free stream parallel to 
the x-axis at Mach number M = 2.858 with pT = 0 and Y/X = - 0.5530, cal- 
culation of the drag coefficient ox (CD) gave the following results: 

% = 0.1441, cr,= 0.1640, cx = 0.1628 I 



218 A.N. Ki-aiko, I.N. Naumova and 1u.D. Shmyglevskil 

Profile 1 gives the solution of the problem. It consists of a rectilinear 
portion with 6 = - 0.1977 and a step portion. Profile 2 is rectilinear and 
joins the points a and g . Profile 3 joins the points a and g and 
realizes the solution with an isentropic discontinuity. 
determined by EquatZon 

The value of C, is 

where the subscript = denotes parameters of the free stream. 

51 We have here found the regions for different solutions in the flow 
plane, considered the hodograph plane, and found solutions with step portions 
under the assumption that the pressure of the step is constant and does not 
depend upon the shape of the desired contour. However, the pressure on the 
step ordinarily depends upon the shape of the contour ab . The qualitative 
investigation in ['j'], in which the presence of a step was postulated, shows 
that the solution including this dependence differs from the solution found 
above. At the same time the inequalities (1.6) and (4.3) are preserved. 
This makes it possible to find the region in which a contour without a step 
gives the solution. For verifying (1.6) and (4.3) it is sufficj.ent to use 
an approximate value of PT obtained, for example, by the method of [ll]. 

It is essential that if the solution under the assumption of PT as con- 
stant, leads to a contour with a step portion, when ,p~ is chosen to have 
its smallest possible value, then in reality this contour, not being optimum, 
ensures a higher thrust than the solutions without a step obtained previously. 
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